34th Central European Conference on Information and Intelligent Systems

PROJECT SECTION **PITCHES**

PROJECT NAME:

ORKAN - UNMANNED AERIAL VEHICLE CONTROL AND SURVEILLANCE FRAMEWORK

INSTITUTION:

University of Zagreb, Faculty of Organization and Informatics

PRESENTER: Neven Vrček

20 - 22 September, 2023 / organized by Faculty of Organization and Informatics / Dubrovnik, Croatia

ORKAN project

Objectives (1/2):

- Research business, legal and ethical trends and development of methodology for risk assessment related to drones in urban environment
- Research business models and use cases
- Energy efficient UAV communication
- Constellation UAV RF spectrum scanners
- UAV constellation control center (UCCC)

Ovaj je rad financirala Hrvatska zaklada za znanost projektom IP-2019-04-4864. This work has been supported by the Croatian Science Foundation under the project IP-2019-04-4864.

ORKAN project

Objectives (2/2):

- Signal source localization
- Measuring the efficiency of intruder drone pilot localization using the final constellation model
- Development of mechanisms for autonomous, semi-autonomous or manual navigation by constellation of UAVs
- Testing various use cases and scenarios

UAV constellation as a platform for scientific research

Modular and extensible design

PoC architecture

UCCC's demo

Mission fleet design

RF localization application - Solution

UAV control signal

Signal strength analysis

RF localization application

- Algorithm:
 - goal find the point in space where the probability of the source of signal is the highest
 - after first RSSI reading adjustable point grid is constructed around the centroid of the constellation (akin to particle filtering)
 - each point assigned a 4-tuple (X, Y, Z, probability)
 - distance between each of the points can be adjusted depending on the required precision

Example point grid

RF localization application

- Algorithm:
 - signal propagation is considered omnidirectional
 - a **circle** can be formed around the source of the signal *fuzzy sphere*
 - radius is calculated using appropriate path-loss models from received signal strength

D1 = location of RSSI reading

I = example point on the circle

H = example grid point outside of the signal range

r = radius of the circle

2D visualization of the grid